CGS 2545: Database Concepts Spring 2012

Chapter 7 – Advanced SQL

Instructor :	Dr. Mark Llewellyn
	markl@cs.ucf.edu
	HEC 236, 407-823-2790
http:/	//www.cs.ucf.edu/courses/cgs2545/spr2012

Department of Electrical Engineering and Computer Science Computer Science Division University of Central Florida

CGS 2545: Database Concepts (Chapter 7)

Processing Multiple Tables – Joins

- The ability to combine, or **join**, tables on common attributes is one of the most important advantages that relational databases have over other types of databases.
- A join is performed when data are retrieved from more than one table at a time.
- There are several different types of join operations as illustrated on the next page.
- In general, a join operation causes two or more tables with a common domain to be combined into a single table or view.

Processing Multiple Tables – Joins

- Theta-join a join in which the joining condition is based on equality between values in the common columns; common columns appear redundantly in the result table. If all join conditions are equality, then the operation is known as an equi-join.
- Natural join an equi-join in which one of the duplicate columns is eliminated in the result table.
- Outer join a join in which rows that do not have matching values in common columns are nonetheless included in the result table (as opposed to *inner* join, in which rows must have matching values in order to appear in the result table).
- Union join includes all columns from each table in the join, and an instance for each row of each table.

The common columns in joined tables are usually the primary key of the dominant table and the foreign key of the dependent table in 1:M relationships.

Theta-Join and Equijoin Operators

- The theta-join operation is a shorthand for a Cartesian product followed by a selection operation.
- The equijoin operation is a special case of the theta-join operation that occurs when all of the conditions in the predicate are equality conditions.
- Neither a theta-join nor an equijoin operation eliminates extraneous tuples by default. Therefore, the elimination of extraneous tuples must be handled explicitly via the predicate.

Theta-Join Operator Examples

R

		-	
A	В	С	D
a	a	yes	1
b	d	no	7
c	f	yes	34
a	d	no	6

 $r = R \vartriangleright \lhd_{(R.B < S.F)} S$

Α	В	С	D	E	F	G	Н
a	a	yes	1	b	r	yes	3
a	a	yes	1	С	f	yes	34
a	a	yes	1	m	n	no	56
b	d	no	7	b	r	yes	3
b	d	no	7	С	f	yes	34
b	d	no	7	m	n	no	56
c	f	yes	34	b	r	yes	3
c	f	yes	34	m	n	no	56
a	d	no	6	b	r	yes	3
a	d	no	6	с	f	yes	34
a	d	no	6	m	n	no	56

S

Е	F	G	Н
a	а	yes	1
b	r	yes	3
c	f	yes	34
m	n	no	56

CGS 2545: Database Concepts (Chapter 7)

Page 5

Natural Join Operator

Type: binary r*s Symbol/general form: r*s Schema of result relation: concatenation of operand relations with only one occurrence of commonly named attributes Definition: $r*s \equiv r \triangleright \triangleleft (r.commonattributes = s.commonattributes) s$ Examples: s*spj*p

- The natural-join operation performs an equijoin over all attributes in the two operand relations which have the same attribute name.
- The degree of the result relation of a natural-join is sum of the degrees of the two operand relations less the number of attributes which are common to both operand relations. (In other words, one occurrence of each common attribute is eliminated from the result relation.)
- The natural join is probably the most common of all the forms of the join operation. It is extremely useful in the removal of extraneous tuples. Those attributes which are commonly named between the two operand relations are commonly referred to as the *join attributes*.

CGS 2545: Database Concepts (Chapter 7)

Natural Join Operator Examples

R

Α	В	С	D
a	a	yes	1
b	r	no	7
c	f	yes	34
a	m	no	6

r = R * S

r = R * T

Α	В	С	D	М	G	Н
a	а	yes	1	а	yes	1
a	а	yes	1	f	yes	34
a	m	no	6	n	no	56

	-				
А	В	С	D	G	Н
b	r	no	7	yes	30

S

В	Μ	G	Н
a	а	yes	1
b	r	yes	3
a	f	yes	34
m	n	no	56

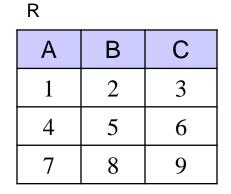
Т			
Α	В	G	Н
a	f	no	31
b	r	yes	30

CGS 2545: Database Concepts (Chapter 7)

Outer Join Operator

Type: binary Symbol/general form: left-outer-join: r⊃⊲s right-outer-join: r⊳⊂s full outer join: r⊃⊲⊳⊂s Schema of result relation: concatenation of operand relations Definition:

 $r \supset \triangleleft S \equiv$ natural join of r and s with tuples from r which do not have a match in s included in the result. Any missing values from s are set to null.


 $r \triangleright \subset S \equiv$ natural join of r and s with tuples from s which do not have a match in r included in the result. Any missing values from r are set to null. $r \supset \triangleleft \triangleright \subset S \equiv$ natural join of r and s with tuples from both r and s which do not have a match are included in the result. Any missing values are set to null. Examples: Let $r(A,B) = \{(a, b), (c, d), (b,c)\}$ and let $s(A,C) = \{(a, d), (s, t), (b, d)\}$ then $r \supset \triangleleft S = (A,B,C) = \{(a,b,d), (b,c,d), (c,d,null)\},$ $r \triangleright \subset S = (A,B,C) = \{(a,b,d), (b,c,d), (s,null,t)\},$ and

 $\mathbf{r} \supset \triangleleft \triangleright \subset \mathbf{S} = (A,B,C) = \{(a,b,d), (b,c,d), (s,null,t), (c,d,null)\},\$

CGS 2545: Database Concepts (Chapter 7)

Outer Join Operator Examples

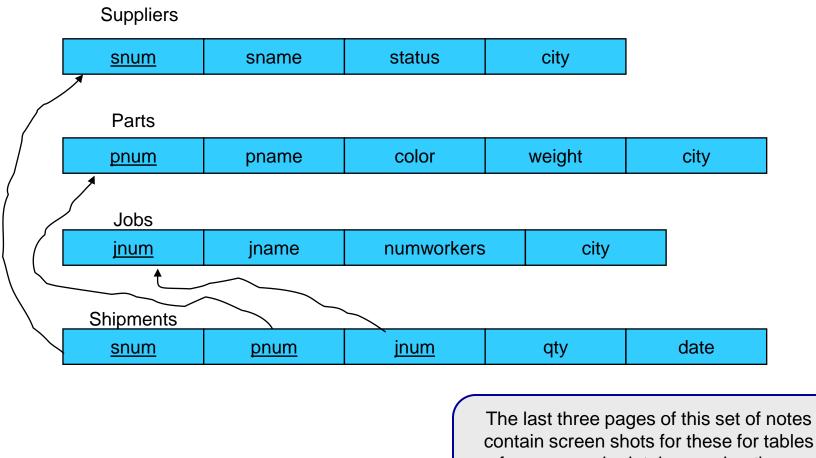
 $r = R \supset a \subseteq S$

Α	В	С	D
1	2	3	10
1	2	3	11
4	5	6	null
7	8	9	null
null	6	7	12

S

В	С	D
2	3	10
2	3	11
6	7	12

$$\mathsf{r} = \mathsf{R} \supset \triangleleft \mathsf{S}$$


Α	В	С	D
1	2	3	10
1	2	3	11
4	5	6	null
7	8	9	null

 $r = R \triangleright \subset S$

В	С	D	А
2	3	10	1
2	3	11	1
6	7	12	null

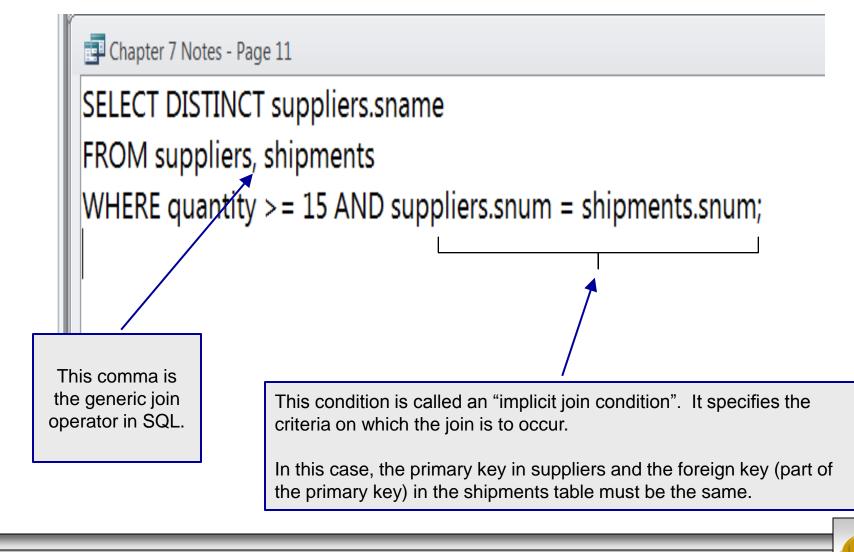
CGS 2545: Database Concepts (Chapter 7)

An Example Database

The last three pages of this set of notes contain screen shots for these for tables from a sample database using these tables. They might help to make some of the following examples more clear.

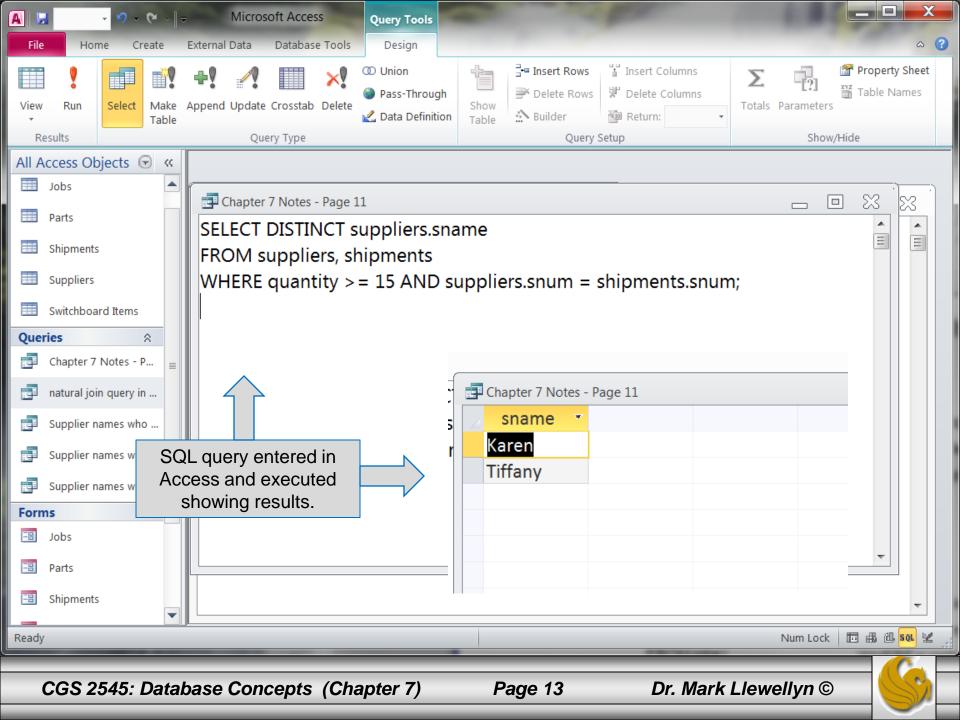
CGS 2545: Database Concepts (Chapter 7)

Natural Join Example 1


Query: List only the names (remove duplicates) of those suppliers who have a shipment with a quantity >= 15.

SELECT DISTINCT sname FROM Suppliers NATURAL JOIN Shipments WHERE quantity >= 15;

Note that Access does not support the natural join syntax shown above. In Access this query is expressed as shown on the next page.

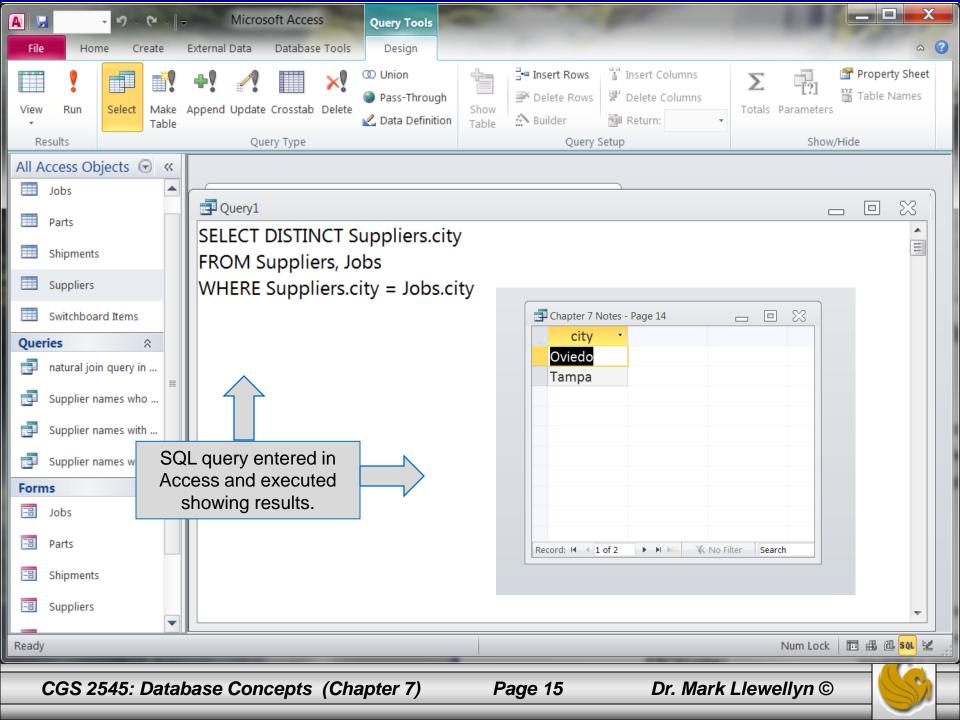


Natural Join Example 1 In Access

CGS 2545: Database Concepts (Chapter 7)

Page 12

Natural Join Example 2


Query: List only the names (remove duplicates) of those cities in which both a supplier and a job are located.

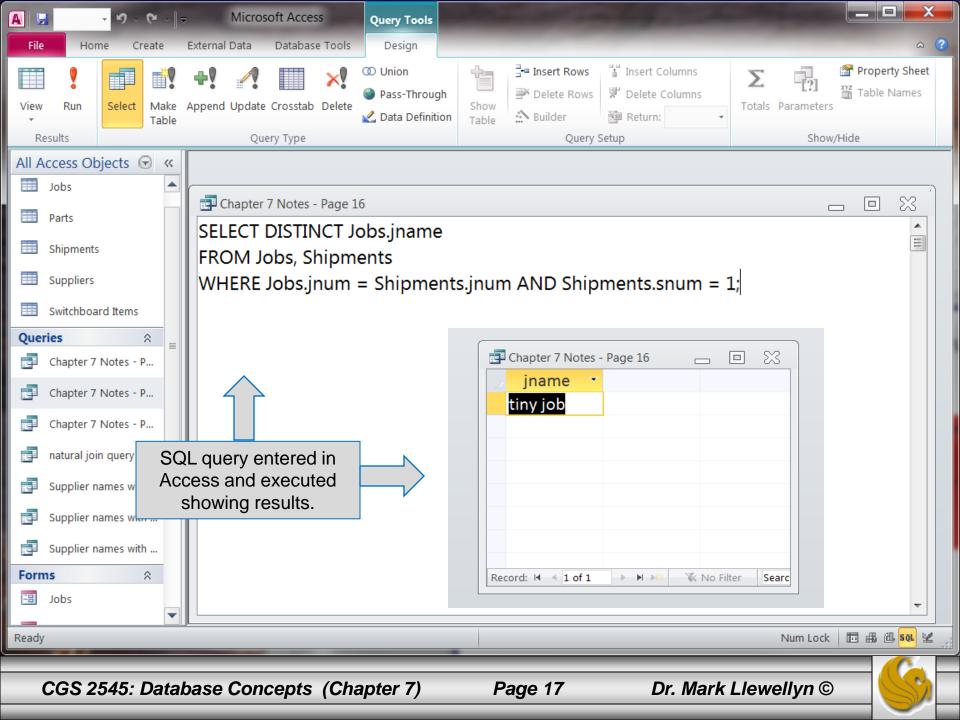
SELECT DISTINCT Supplier.city FROM Suppliers NATURAL JOIN Jobs;

Access Version:

SELECT DISTINCT Supplier.city
FROM Suppliers, Jobs
WHERE Suppliers.city = Jobs.city;

Natural Join Example 3

Query: List only the names (remove duplicates) of those jobs which receive a shipment from supplier number 1.


SELECT DISTINCT Jobs.jname
FROM Jobs NATURAL JOIN Shipments
WHERE Shipments.snum = 1;

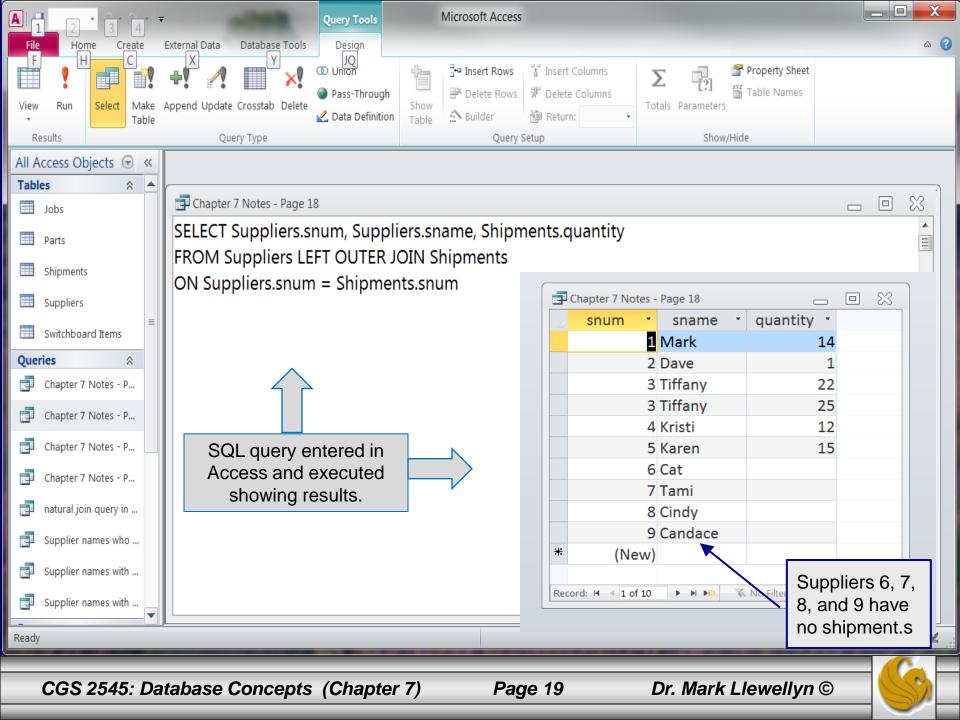
Access Version:

SELECT DISTINCT Jobs.jname
FROM Jobs, Shipments
WHERE Jobs.jnum = Shipments.jnum
AND Shipments.snum = 1;

CGS 2545: Database Concepts (Chapter 7)

Left Outer Join Example

• List the supplier numbers and names along with the quantity of each order a supplier has and include supplier information even for suppliers who have no shipments.


Access version:

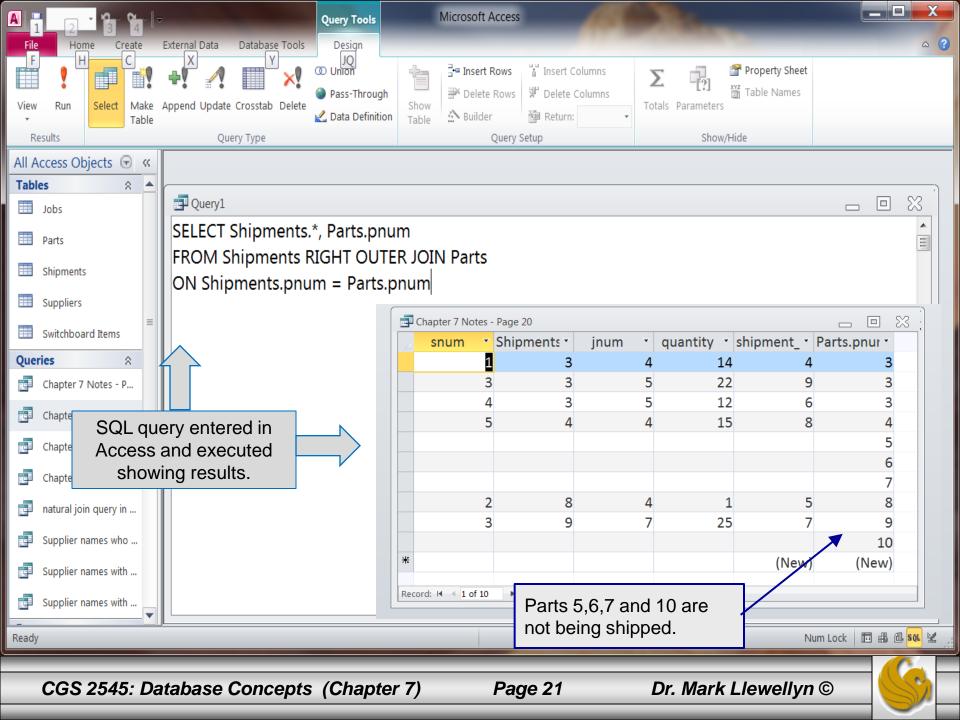
SELECT Suppliers.snum, Suppliers.sname, Shipments.quantity FROM Suppliers LEFT OUTER JOIN Shipments ON Suppliers.snum = Shipments.snum;

LEFT OUTER JOIN syntax with ON keyword instead of WHERE causes supplier information to appear even if there is no corresponding shipment information for that supplier.

CGS 2545: Database Concepts (Chapter 7)

Right Outer Join Example

• List all the information about each shipment and the part number of every part that is not shipped by any supplier.


Access version:

SELECT Shipments.*, Parts.pnum
FROM Shipments RIGHT OUTER JOIN Parts
ON Shipments.pnum = Parts.pnum;

RIGHT OUTER JOIN syntax with ON keyword instead of WHERE causes part information to appear even if there is no corresponding shipment information for that part.

CGS 2545: Database Concepts (Chapter 7)

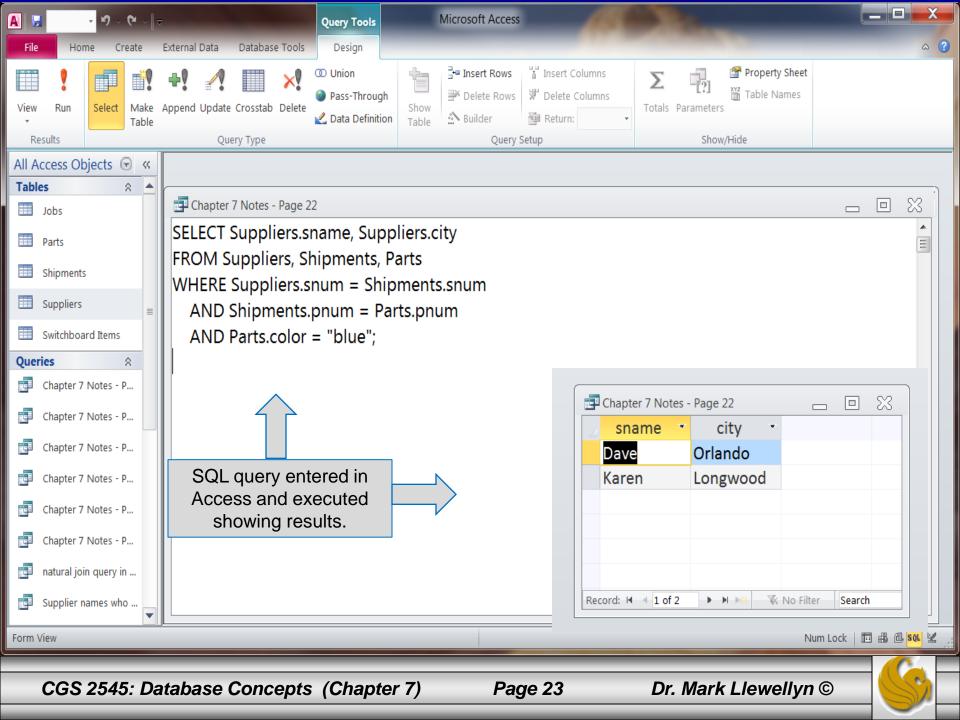
Page 20

Multiple Table Join Example 1

• List the supplier name and city for every supplier who has a shipment of a blue part.

SQL Version:

SELECT Suppliers.sname, Suppliers.city
FROM Suppliers NATURAL JOIN Shipments NATURAL JOIN Parts
WHERE Parts.color = "blue";


Access Version:

SELECT Suppliers.sname, Suppliers.city
FROM Suppliers,Shipments,Parts
WHERE Suppliers.snum = Shipments.snum
AND Shipments.pnum = Parts.pnum
AND Parts.color = "blue";

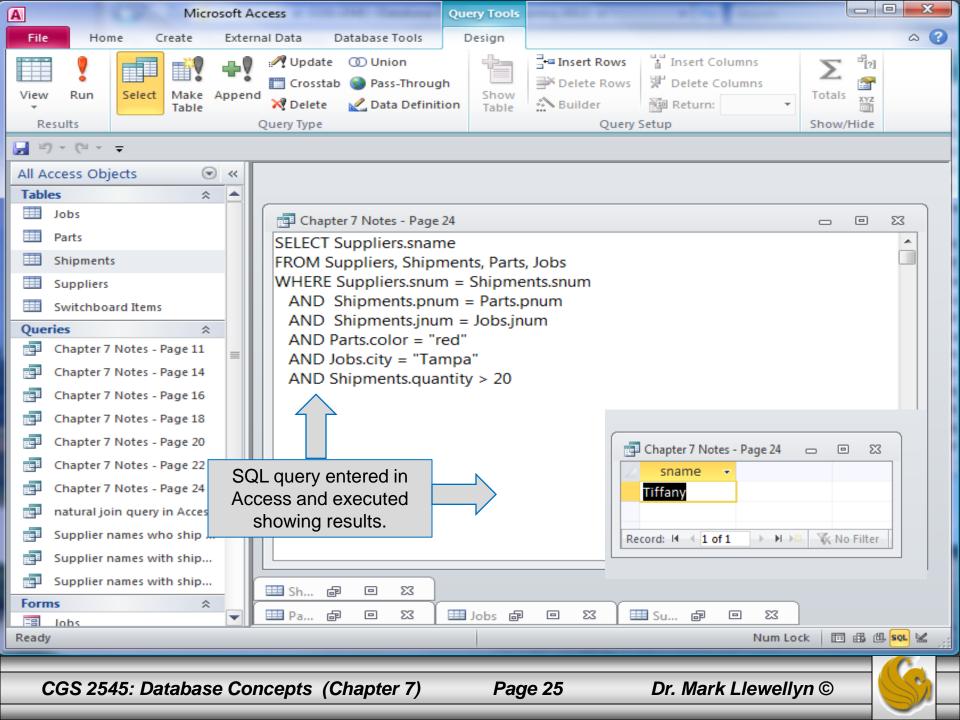
Each pair of tables requires an implicit join condition in the WHERE clause, matching primary keys against foreign keys

CGS 2545: Database Concepts (Chapter 7)

Page 22

Multiple Table Join Example 2

• List the supplier names for those suppliers who supply a red part to any job in Tampa in a quantity > 20.


SQL Version:

```
SELECT Suppliers.sname
FROM Suppliers NATURAL JOIN Shipments NATURAL JOIN Parts
NATURAL JOIN Jobs
WHERE Parts.color = "red" AND Jobs.city = "Tampa"
AND Shipments.quantity > 20;
```

Access Version: (see next page)

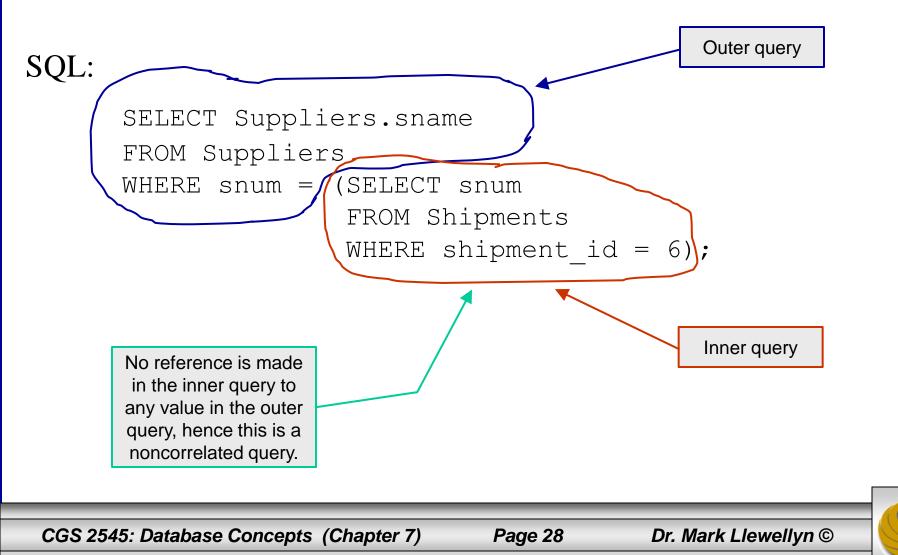
CGS 2545: Database Concepts (Chapter 7)

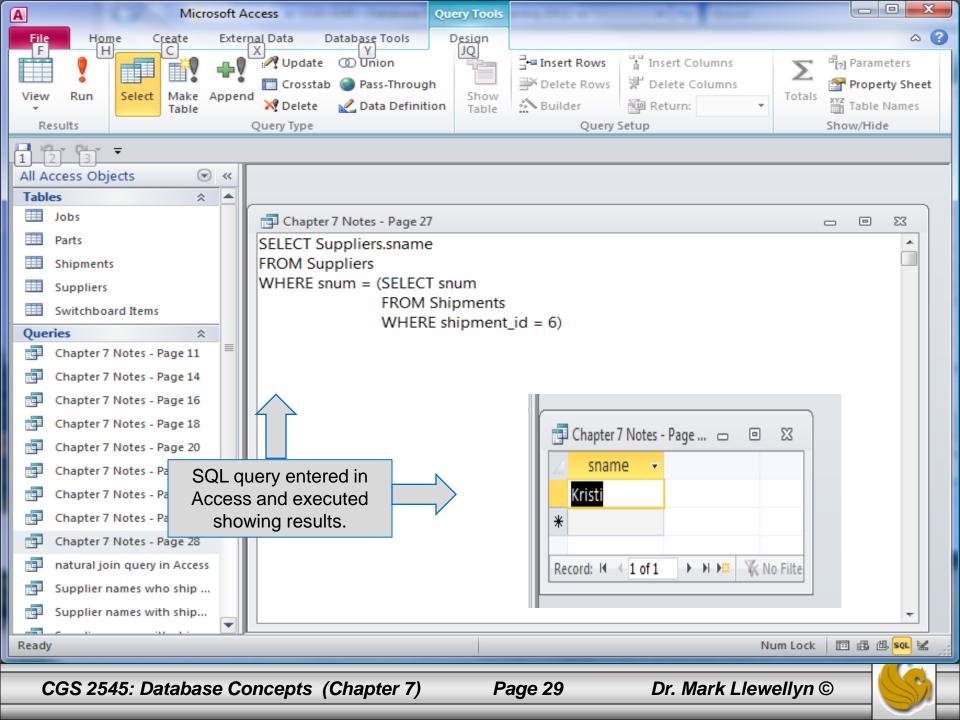
Processing Multiple Tables Using Subqueries

- A subquery is formed by placing a query inside a query, i.e., placing a SELECT statement (the inner query) inside a SELECT statement (the outer query).
- A subquery can occur in several different location: The options are:
 - In a condition of the WHERE clause.
 - As a "table" of the FROM clause.
 - Within the HAVING clause.
- Subqueries can be:
 - Noncorrelated executed once for the entire outer query.
 - Correlated executed once for each row returned by the outer query.

Correlated vs. Noncorrelated Subqueries

- Noncorrelated subqueries:
 - Do not depend on data from the outer query.
 - Execute once for the entire outer query.
- Correlated subqueries:
 - Make use of data from the outer query.
 - Execute once for each row of the outer query.
 - Can use the EXISTS operator.




Dr. Mark Llewellyn ©

CGS 2545: Database Concepts (Chapter 7)

Subquery Example 1 (Where clause)

• List the name of the supplier who shipped shipment number 6.

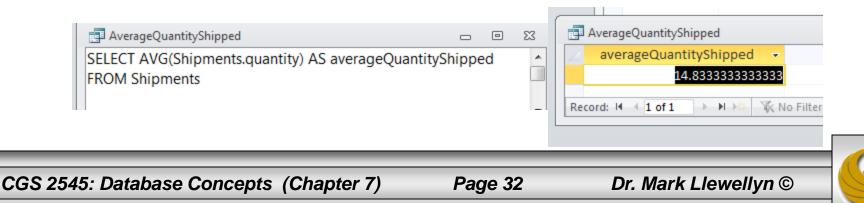
Subquery Example 2 (Where clause)

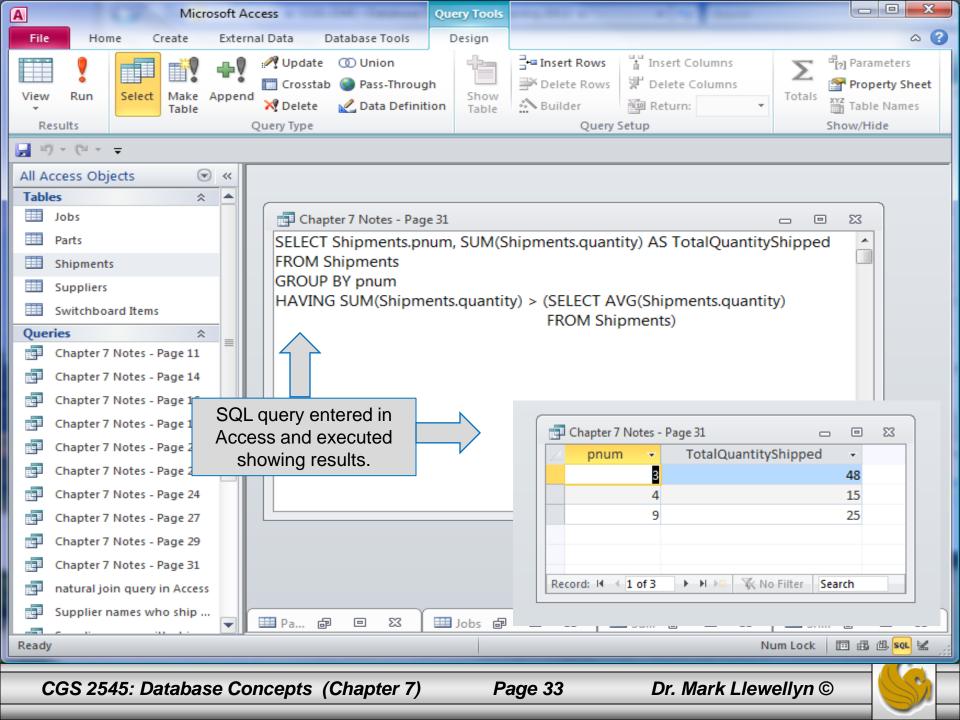
• List the names of those suppliers who at least one shipment.

SQL:

```
SELECT Suppliers.sname
FROM Suppliers
WHERE snum IN (SELECT DISTINCT snum
                     FROM Shipments);
       The IN operator is a set
       operator that checks to see if
       the left-hand operand (a value
       or set member instance) is
       contained in the right-hand
       operand (a set). The IN
       operator returns true or false.
```

CGS 2545: Database Concepts (Chapter 7)


A Microsoft Access	Query Tools				
File Home Create External Data Database Tools	Design				۵ 🕜
View Run Results Results Query Type	igh Show	Delete Rows	H Insert Columns H Delete Columns IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Totals	Property Sheet Table Names Show/Hide
y = (u + =					
All Access Objects All Access Objects All A	ne	;	Chapter 7 Notes - Pa sname ▼ Mark Dave Tiffany Kristi Karen		
Form View			1	Num Lock	🖽 🕮 🕮 🚾 🔛 💥
CGS 2545: Database Concepts (Chapter 7)	Pag	ge 31	Dr. Mark Llev	vellyn	© \iint


Subquery Example 3 (Having clause)

• List the part names and the total quantity shipped of that part for parts that are supplied in quantities greater than the average quantity of all parts supplied.

SQL/Access Version:

```
SELECT Shipments.pnum, SUM(Shipments.quantity) AS
    TotalQuantityShipped
FROM Shipments
GROUP BY pnum
HAVING SUM(Shipments.quantity) >
    (SELECT AVG(Shipments.quantity)
    FROM Shipments);
```


Subquery Example 4 (From clause)

• List the unique part names for all the blue parts that are shipped.

SQL Version:

SELECT DISTINCT pname
FROM Shipments NATURAL JOIN (SELECT pnum
FROM Parts
WHERE color = "blue");

Access Version:

CGS 2545: Database Concepts (Chapter 7)

A Micro	soft Access	Query Tools				- O X
File Home Create	External Data Database Tools	Design				۵ (?
View Run Results	Append Query Type	Show	Gelete Rows Celete Rows Suilder Query S	Insert Columns Insert Columns Delete Columns Image: Return: Image: Setup	Totals	arameters roperty Sheet able Names ı/Hide
🚽 🖻 = 🕲 = 📼						
All Access Objects Tables Jobs Parts	Chapter 7 Notes - Page 33					
 Shipments Suppliers Switchboard Items 	FROM (SELECT * FROM Shipments.pnum) AS PI WHERE PB.color="blue"	Parts INNEF B	IOIN [Shipme	nts] ON Parts.pnum =		
Queries $\stackrel{>}{\sim}$ Image: AverageQuantityShipped Image: Chapter 7 Notes - Page 11						
Chapter 7 Notes - Page 1 Chapter 7 Notes - Page 20	SQL query entered in Access and executed showing results.			oname 👻	23	
 Chapter 7 Notes - Page 22 Chapter 7 Notes - Page 24 Chapter 7 Notes - Page 27 Chapter 7 Notes - Page 29 Chapter 7 Notes - Page 31 			Record	: I4 → 1 of 1 → →I → II	承1	
Chapter 7 Notes - Page 33 Ready			25			■ @ Soc ¥ _;;
CGS 2545. DalaDas	e Concepts (Chapter 7)	Pé	age 35	Dr. Mark Llew	enyn 🕒	

SELECT CUSTOMER_NAME FROM CUSTOMER_T WHERE CUSTOMER_ID IN

Processing a noncorrelated subquery

- 1. The subquery executes and returns the customer IDs from the ORDER_T table
- 2. The outer query on the results of the subquery

(SELECT DISTINCT CUSTOMER_ID FROM ORDER_T);

 The subquery (shown in the box) is processed first and an intermediate results table created:

CUSTOMER_ID

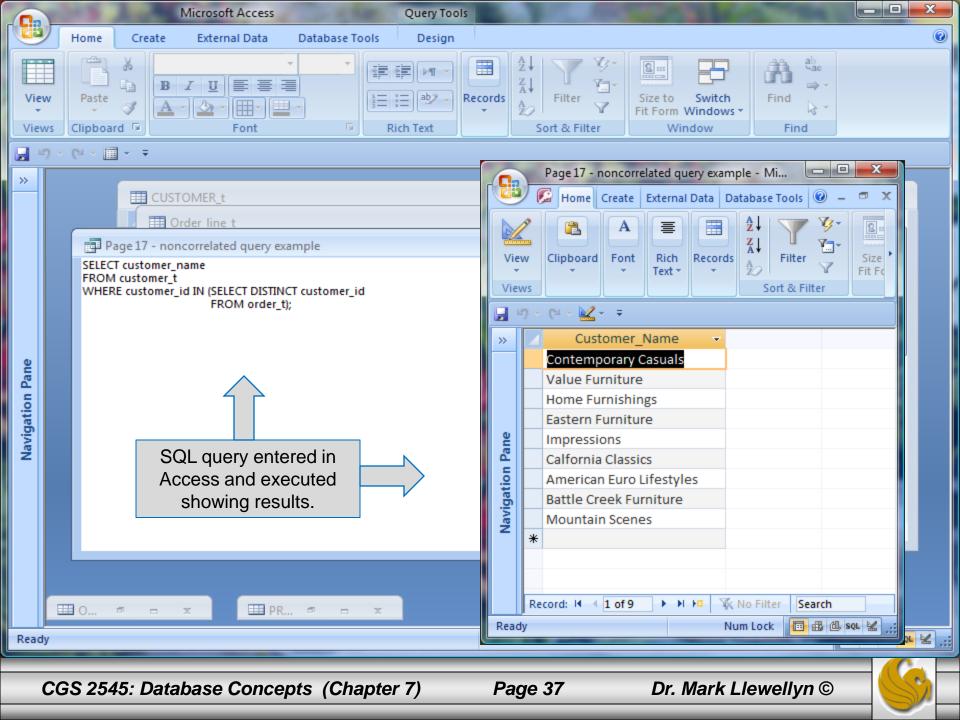
2 11

12

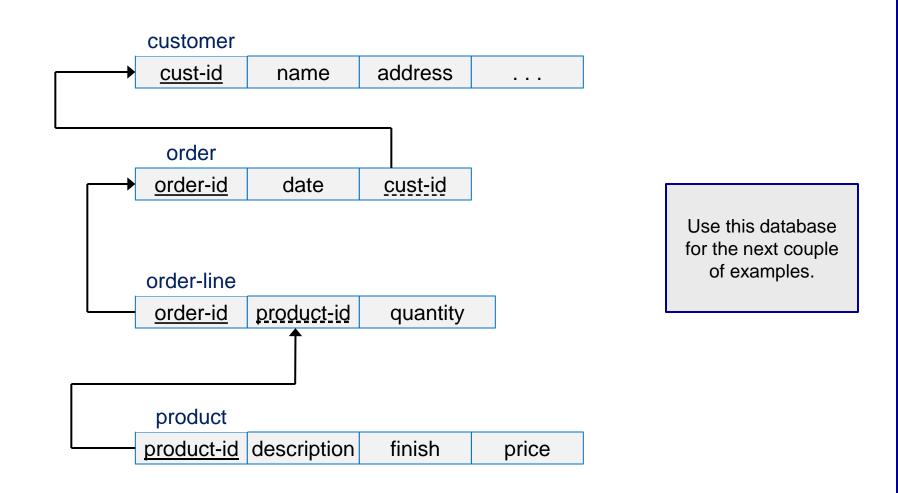
No reference to data
in outer query, so
subquery executes
once only

9 rows selected.

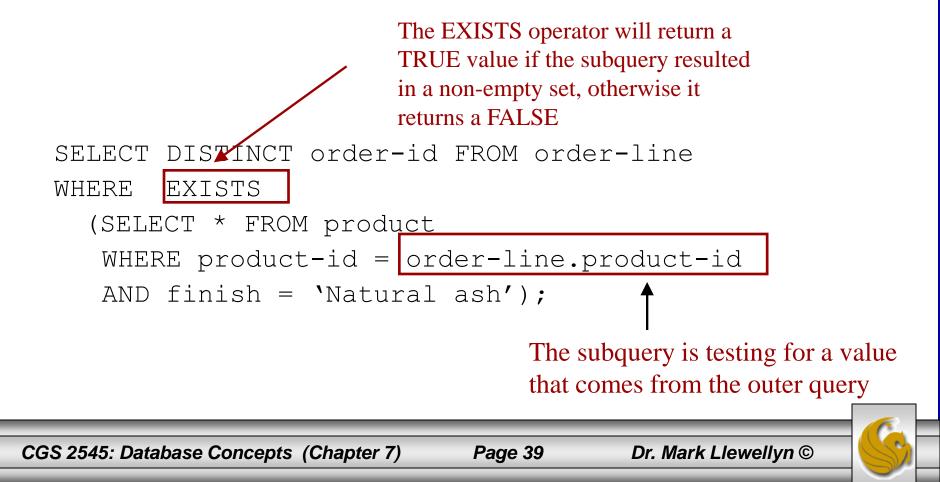
The outer query returns the requested customer information for each customer included in the intermediate results table:

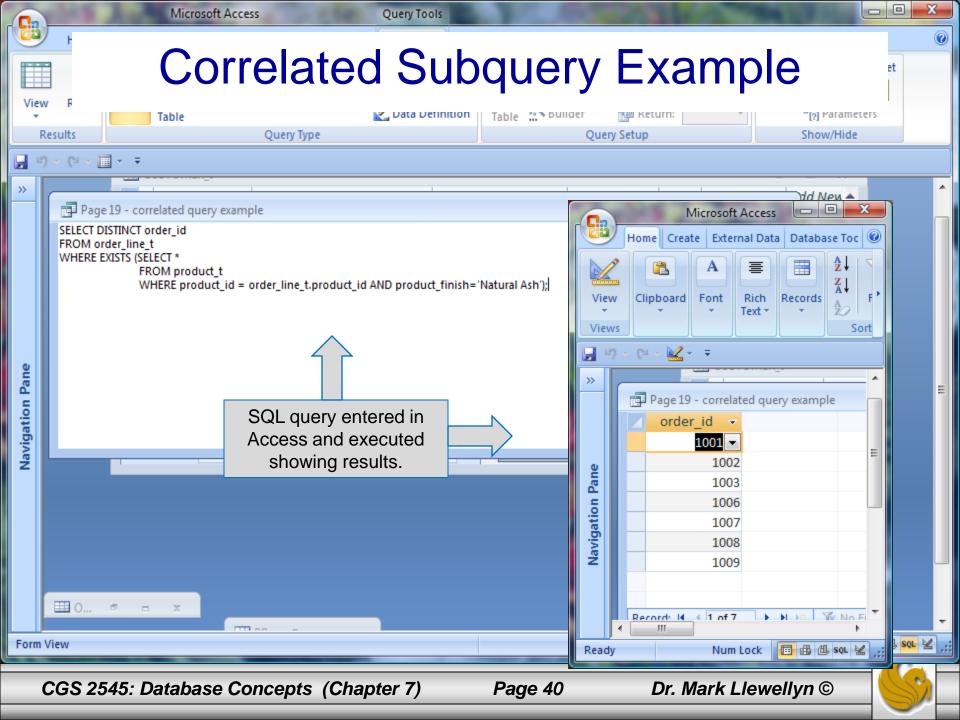

CUSTOMER_NAME

Contemporary Casuals Value Furniture Home Furnishings Eastern Furniture Impressions California Classics American Euro Lifestyles Battle Creek Furniture Mountain Scenes 9 rows selected.

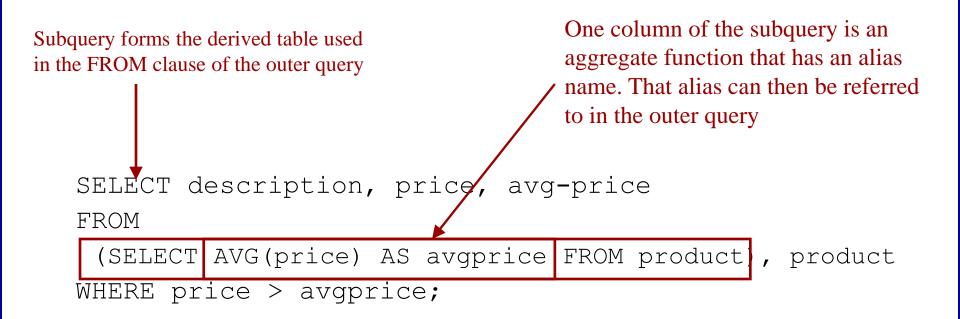

These are the only customers that have IDs in the ORDER_T table

CGS 2545: Database Concepts (Chapter 7)

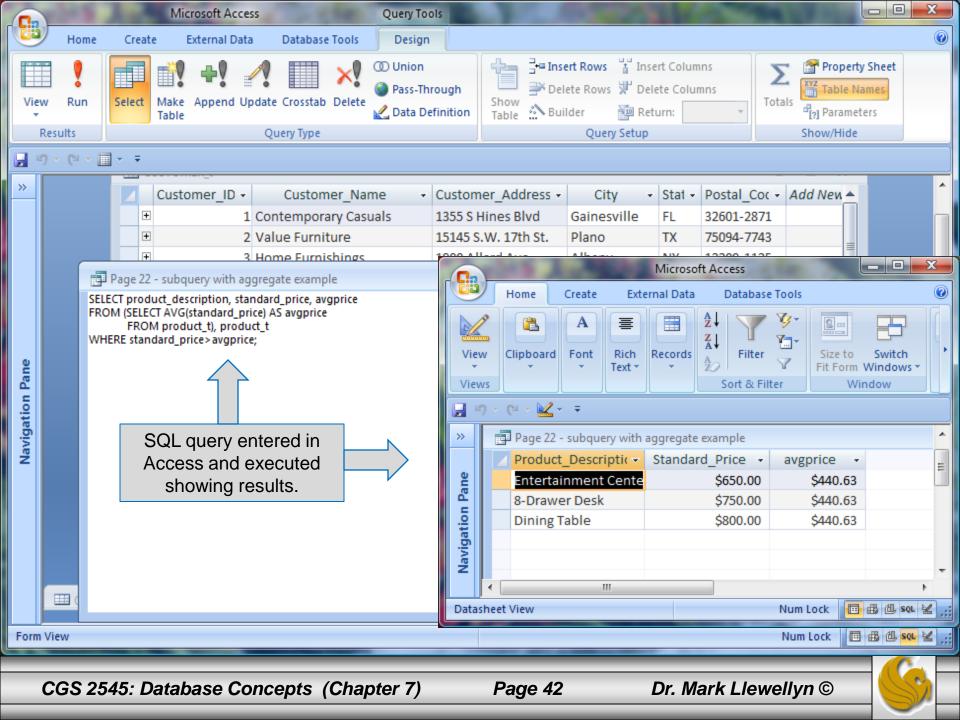

Correlated Subquery Example



Correlated Subquery Example


• Show all orders that include products finished in natural ash

Another Subquery Example


• Show all products whose price is higher than the average

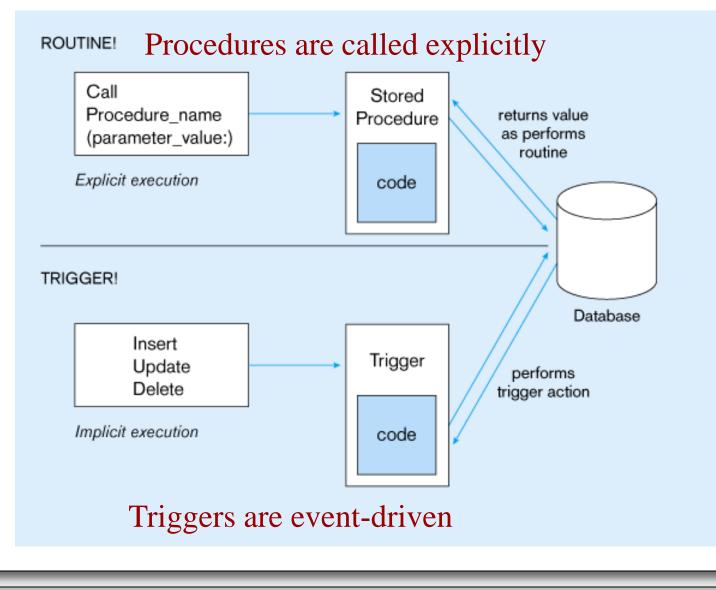
The WHERE clause normally cannot include aggregate functions, but because the aggregate is performed in the subquery its result can be used in the outer query's WHERE clause

CGS 2545: Database Concepts (Chapter 7)

Routines and Triggers

• Routines

- Program modules that execute on demand
- Functions routines that return values and take input parameters
- Procedures routines that do not return values and can take input or output parameters


Triggers

 Routines that execute in response to a database event (INSERT, UPDATE, or DELETE)

CGS 2545: Database Concepts (Chapter 7)

Triggers contrasted with stored procedures

CGS 2545: Database Concepts (Chapter 7)

Page 44

Oracle PL/SQL trigger syntax

CREATE [OR REPLACE] TRIGGER trigger_name {BEFORE AFTER} {INSERT | DELETE | UPDATE} ON table_name [FOR EACH ROW [WHEN (trigger_condition)]] trigger_body_here;

SQL:20XX Create routine syntax

{CREATE PROCEDURE | CREATE FUNCTION} routine_name ([parameter [{,parameter} . . .]]) [RETURNS data_type result_cast] /* for functions only */ [LANGUAGE {ADA | C | COBOL | FORTRAN | MUMPS | PASCAL | PLI | SQL}] [PARAMETER STYLE {SQL | GENERAL}] [SPECIFIC specific_name] [DETERMINISTIC | NOT DETERMINISTIC] [NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA] [RETURN NULL ON NULL INPUT | CALL ON NULL INPUT] [DYNAMIC RESULT SETS unsigned_integer] /* for procedures only */ [STATIC DISPATCH] /* for functions only */ routine_body

CGS 2545: Database Concepts (Chapter 7)

Embedded and Dynamic SQL

- Embedded SQL
 - Including hard-coded SQL statements in a program written in another language such as C or Java
- Dynamic SQL
 - Ability for an application program to generate
 SQL code on the fly, as the application is running

Suppliers Table Instance

	snum 👻	sname 👻	status 👻	city -	Click	to A
E	± 1	Mark	4	Oviedo		
E	± 2	Dave	30	Orlando		
E	± 3	Tiffany	2	Winter Springs		
E	± 4	Kristi	1	Orlando		
E	± 5	Karen	3	Longwood		
E	± 6	Cat	4	Oviedo		
G	± 7	Tami	3	Winter Springs		
E	± 8	Cindy	2	Tampa		
G	± 9	Candace	17	London		
*	(New)		0			

	2	Field Name	Data Type
1	₽	snum	AutoNumber
1		sname	Text
		status	Number
		city	Text

CGS 2545: Database Concepts (Chapter 7)

Page 47

Parts Table Instance

		pnum 👻	pname 👻	color 👻	weight 👻	city 👻
	+	3	bolt	red	3	Orlando
	+	4	nut	blue	14	Tampa
	+	5	flange	red	7	Miami
	+	6	clamp	black	3	Orlando
	+	7	nut	red	4	Orlando
	+	8	nut	blue	5	Tampa
	+	9	switch	green	3	Oviedo
	+	10	gasket	brown	1	Tampa
*		(New)			0	

\mathbb{Z}	Field Name	Data Type
₽Þ	pnum	AutoNumber
	pname	Text
	color	Text
	weight	Number
	city	Text

CGS 2545: Database Concepts (Chapter 7)

Jobs Table Instance

2		jnum 🔻	jname 🔻	numworker: •	city 👻	(
	Ŧ	4	tiny job	1	Oviedo	
	Ŧ	5	small job	4	Tampa	
	Ŧ	6	bigger job	15	Jacksonville	
	÷	7	huge job	45	Miami	
*		(New)		0		

Z	Field Name	Data Type
81	jnum	AutoNumber
	jname	Text
	numworkers	Number
	city	Text

CGS 2545: Database Concepts (Chapter 7)

Page 49

Shipments Table Instance

Z	snum	•	pnum	Ŧ	jnum 👻	Ι	quantity 🕞	shipment_IC + C
		1		3	4	Ļ	14	4
		2		8	4	Ļ	1	. 5
		3		3	5	5	22	9
		3		9	7	7	25	7
		4		3	5	5	12	6
		5		4	4	ŀ	15	8
*		0		0	0)	0	(New)

	Field Name	Data Type
8	snum	Number
8	pnum	Number
8	jnum	Number
	quantity	Number
	shipment_ID	AutoNumber

CGS 2545: Database Concepts (Chapter 7)

Page 50